Sie sind vermutlich noch nicht im Forum angemeldet - Klicken Sie hier um sich kostenlos anzumelden  
Sie können sich hier anmelden
Dieses Thema hat 0 Antworten
und wurde 45 mal aufgerufen
Labi1995 Offline

Beiträge: 436

04.07.2019 07:19
analyses to compare distributions of Antworten

As runners, we often want concrete, black and white answers to questions about things like shoe design, running form, training methods, and so on. Does running in a minimal shoe make you less prone to injury than running in a traditionally cushioned, heel-lifted shoe? Does switching form to a midfoot strike make you faster? Will wearing compression sleeves make you recover faster after a race? Unfortunately, answers to questions like these aren’t simple, often because there are too many competing variables that make clear-cut conclusions difficult. Furthermore, an answer to one of these questions might not apply to to every single person – humans are variable, and changes will affect people in different ways. A given shoe might be great for one person, but terrible for another – it’s really hard to say what the result will be with any certainty.As an example, I ran the Manchester City Marathon last November in a fairly minimal racing flat (Saucony Grid Type A4). My legs suffered during the race, and I irritated something in my left foot which cause me some trouble for about a week afterward. The easy and most tempting conclusion was that the shoes were to blame – I wore a flat for a very long, intense race, and it was the wrong choice. However, the culprit could just as easily have been the difficult, hilly course combined with the fact that I had just run an intense, BQ effort marathon a month before. In fact, in reading my race report from the same race the previous year, I experienced similar leg issues in Saucony Fastwitch lightweight trainers, which are much more cushioned and have a standard heel lift. Furthermore, a few weeks before the Hartford Marathon in 2009 I had irritated my foot in seemingly the same way as I did in Manchester, so maybe I’m simply susceptible to irritating what I think is my peroneus longus tendon. So where does this leave me? It leaves me to conclude that I have no idea exactly how I hurt my foot, why my legs suffered, or whether the shoes were to blame or not (or how much blame I should attribute to them). Such is the difficulty of trying to pinpoint clear causative factors when it comes to running injuries and the like.One way to get at answers to questions like these is to turn to scientific experimentation. If we could run more controlled comparisons and hold as many variables constant as possible, maybe we could come to firmer conclusions. This is great in theory, but even science has its limitations. Let me walk you through a hypothetical example. Suppose we were interested in whether a given shoe could encourage a flatter, more midfoot foot strike (a very big goal for a lot of people these days, and a big marketing claim for manufacturers). Let’s take the two shoes I mentioned above, the Saucony Fastwitch and the Saucony Grid Type A4. Both are very lightweight, but they differ in some basic structural properties. The Fastwitch has a standard heel lift, whereas the Grid Type A4 has a much lower heel (see pictures below). We could have 20 people run by a high-speed camera in each shoe, measure the angle between the foot and ground for each, and compare the results between the two shoe conditions.It’s quite possible, perhaps even likely, that the runners would on-average exhibit a flatter-footed, midfoot style landing in the flatter shoe (the Grid Type A4). However, the key phrase here is “on-average.” I would almost guarantee that there would be individuals who would buck the average trend and perhaps not show much difference between the shoes, or even show the reverse pattern. Therein lies a problem with scientific studies of running – in order to derive meaning from messy data, we use statistical analyses to compare distributions of numbers and means for groups, and often lose sight of the individual. So, we might conclude from this study that the Grid Type A4 is a better shoe, on average for this sample, at encouraging a midfoot strike, but that does not mean that it will serve this purpose well for every single individual. Perhaps other factors associated with the design of the shoes (e.g., midsole firmness, heel shape, forefoot width, etc.) will uniquely affect how isolated individuals will land in them.

Xobor Erstelle ein eigenes Forum mit Xobor